Skip to main content

Part of UT Health San Antonio

Graduate School of Biomedical Sciences, UT Health San AntonioGraduate School of Biomedical Sciences, UT Health San Antonio

Part of UT Health San Antonio

Give
Search

Quicklinks

Commencement

  • Commencement 2021

Logins

  • Canvas
  • CourseLeaf
  • IMPACT
  • LiveMail
  • My UT Health (Intranet)

Resources

  • COVID-19 Updates for Students
  • Enrolled Student Resources
  • Educational Resources
  • GSBS Data Request Form

 Close Quicklinks

 
Menu
  • About
  • Admissions
  • Programs
  • Research
  • Faculty
  • Student Life
  • Alumni

You are here

  • Faculty directory
  • Swati Banerjee, Ph.D.
Dr Banerjee

Contact

210-567-8124

banerjees@uthscsa.edu

Programs

Ph.D. in Integrated Biomedical Sciences
Physiology and Pharmacology

Departments & Divisions

Department of Cellular & Integrative Physiology

Research

Researcher profile

Swati Banerjee, Ph.D.

Associate Professor

Cellular and Integrative Physiology

Dr. Swati Banerjee uses the Drosophila model system to investigate the cellular and molecular bases of axonal ensheathment and synaptic development and function. We are currently exploring the following three research themes: 

1) Neuron-Glial Interactions and Ensheathment of Axons 

Molecular interactions between neurons and glial cells are vital for proper functioning of nervous system across species. Interactions between neurons and glial cells are central in processes such as ensheathment of axons, formation of axo-glial junctions, and maintenance of functional blood-brain and blood-nerve barriers. We use the Drosophila nervous system to investigate the molecular basis of axonal ensheathment. Using genetic, cell biological and biochemical approaches, we have identified several proteins that have fundamental roles in neuron-glial interactions underlying the process of ensheathment of axons both in the PNS and CNS. Our studies in Drosophila are relevant to elucidate the mechanisms regulating vertebrate myelination in health and disease. 

2) Trans-Synaptic Adhesion and Signaling in Synaptic Growth and Cytoarchitecture 

Our research interest also includes the study of synapse formation and function. Two key synaptic cell adhesion molecules, Neurexin and Neuroligin in Drosophila connect the pre- and postsynaptic terminals of the synapses. In humans, mutations in Neurexin or Neuroligin genes are implicated in Autism Spectrum Disorders and other cognitive disorders. Our recent work indicates that Drosophila Neurexin/Neuroligin 1 regulate components of the BMP signaling pathway. We are interested in deciphering how Neurexin/Neuroligin and related proteins mediate trans-synaptic signaling and shape neural networks to process and refine information. 

3) Role of Synaptic and Cytoskeletal Proteins in Aging and Neurodegeneration 

Cytoskeletal dysfunction, axonal and synapse loss are among the many hallmarks in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson's disease and amyotrophic lateral sclerosis. In these prolonged diseases, decrease in synapse density and changes in cytoskeletal dynamics are among the important correlates of disease progression. Yet, very little is known about the molecular pathways that maintain axonal, synaptic and cytoskeletal health and their roles in aging and neurodegeneration. We are screening for new synapse maintenance and cytoskeletal genes using the Drosophila as our model system to tackle these important questions.

Related diseases:  Multiple Sclerosis, Autism Spectrum Disorders, Parkinson’s and Alzheimer’s disease

Techniques: Genetics, molecular biology, cell biology, biochemistry and electrophysiology

  • Research & Grants

    Neuron-glial interactions, synapse assembly and signaling, cytoskeleton and neurodegeneration

    We are currently exploring the following three research themes: 

    1) Neuron-Glial Interactions and Ensheathment of Axons

    2) Trans-Synaptic Adhesion and Signaling in Synaptic Growth and Cytoarchitecture

    3) Role of Synaptic and Cytoskeletal Proteins in Aging and Neurodegeneration

    Related diseases:  Multiple Sclerosis, Autism Spectrum Disorders, Parkinson’s and Alzheimer’s disease

    Techniques: Genetics, molecular biology, cell biology, biochemistry and electrophysiology

    Research profile

  • Publications

    Monahan Vargas, E. J., Matamoros, A. J., Qiu, J., Jan, C. H., Wang, Q., Gorczyca, D., Han, T. W., Weissman, J. S., Jan, Y. N., Banerjee, S. and Song, Y. (2020). The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes and Dev. 34: 1-15. doi:10.1101/gad.331330.119.

    Shi, Q., Lin, Y. Q., Saliba, A., Xie, J., Neely, G. G. and Banerjee, S. (2019). Tubulin Polymerization Promoting Protein, Ringmaker, and MAP1B Homolog Futsch Coordinate Microtubule Organization and Synaptic Growth. Frontiers in Cell Neurosci. 13:192. doi: 10.3389/fncel.2019.00192.

    Banerjee, S. and Riordan, M. (2018). Coordinated Regulation of Axonal Microtubule Organization and Transport by Drosophila Neurexin and BMP Pathway. Scientific Reports, 8(1):17337.

    Banerjee, S., Mino, R., Fisher, E. and Bhat, M.A. (2017). A Versatile Genetic Tool to Study Midline Glia Function in the Drosophila CNS. Developmental Biology, 1; 429(1):35-43.

    Banerjee, S., Venkatesan, A. and Bhat, M.A. (2017) Neurexin, Neuroligin and Wishful Thinking Coordinate Synaptic Cytoarchitecture and Growth at Neuromuscular Junctions. Mol. Cell. Neurosci.78, 9-24. (Featured on the Cover).

    Mino, R.E., Rogers, S.L., Risinger, A.L., Rohena, C., Banerjee, S. and Bhat, M.A. (2016). Drosophila Ringmaker Regulates Microtubule Stabilization and Axonal Extension During Embryonic Development. J. Cell Sci. 129, 3282-3294.

    Banerjee, S., Riordan, M. and Bhat, M.A. (2014). Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models. Frontiers in Cellular Neuroscience 8:58.

    Chen, Y.-C., Lin, Y.Q., Banerjee, S., Venken, K., Li, J., Ismat, A., Chen, K., Duraine, L., Bellen, H.J. and Bhat, M.A. (2012). Drosophila Neuroligin 2 is Required Presynaptically and Postsynaptically for proper Synaptic Differentiation and Synaptic Transmission. J. Neurosci. 32: 16018-16030.

Map image of UT Health San Antonio location
UT Health San Antonio
Graduate School of Biomedical Sciences

7703 Floyd Curl Drive

San Antonio, TX 78229

210-567-3709

gsbs@uthscsa.edu

  • About us
  • Contact us
  • Maps & directions

We make lives better ®

The University of Texas Health Science Center at San Antonio, also called UT Health San Antonio, is a leading academic health center with a mission to make lives better through excellence in advanced academics, life-saving research and comprehensive clinical care including health, dental and cancer services.

Web Privacy | Links from websites affiliated with UT Health's website (uthscsa.edu) to other websites do not constitute or imply university endorsement of those sites, their content, or products and services associated with those sites. The content on this website is intended to be used for informational purposes only. Health information on this site is not meant to be used to diagnose or treat conditions. Consult a health care provider if you are in need of treatment.