Skip to main content

Part of UT Health San Antonio

Graduate School of Biomedical Sciences, UT Health San AntonioGraduate School of Biomedical Sciences, UT Health San Antonio

Part of UT Health San Antonio

Give
Search

Quicklinks

Commencement

  • Commencement 2021

Logins

  • Canvas
  • CourseLeaf
  • IMPACT
  • LiveMail
  • Syllabus Depot
  • My UT Health (Intranet)

Resources

  • COVID-19 Updates for Students
  • Enrolled Student Resources
  • Educational Resources
  • GSBS Data Request Form

 Close Quicklinks

 
Menu
  • About
  • Admissions
  • Programs
  • Research
  • Faculty
  • Student Life
  • Alumni

You are here

  • Home
  • Academics
  • Graduate School of Biomedical Sciences
  • Programs
  • Integrated Biomedical Sciences
  • Physiology and Pharmacology
  • Physiology and Pharmacology Research

Physiology and Pharmacology Research

phys

Major Areas of Research:

Addiction

UT Health San Antonio is home to the Addiction Research, Treatment & Training Center of Excellence (ARTT). Students apply a variety of approaches to the study of addiction including behavioral pharmacology, biochemistry, electrochemistry, electrophysiology, molecular pharmacology, and neuropharmacology. Human laboratory studies and clinical trials are also ongoing.

Aging

Our students conduct cutting-edge research in the molecular networks that govern the basic biology of aging. They test genetic and pharmacological interventions in invertebrate and vertebrate animal models for their ability to retard aging and minimize its deleterious effects. Specific diseases and physiological deficits associated with aging that are targeted include sarcopenia, metabolic dysregulation/diabetes, cognitive impairment, dementia, and Parkinson’s disease.

Behavioral Pharmacology

Our students, applying basic principles of pharmacology to the study of behavior, investigate the effects of drugs with an emphasis on effects in the whole organism to better understand the pharmacologic mechanisms that underlie conditions, such as depression, autism, pain, and addiction, and to discover novel treatments for these disorders.

Cardiovascular function in health and disease

Our students investigate mechanisms of myocardial and cerebral ischemia-reperfusion injury (myocardial infarction and stroke), renal and neural mechanisms regulating blood pressure (hypertension), neural control of respiration (sleep apnea), and heart rate (arrhythmias). Laboratories emphasize therapeutic targeting of pathogenic mechanisms.

Neurological diseases of aging

Our students investigate molecular and biochemical events that cause neurological diseases of aging, including Alzheimer’s and Parkinson’s disease. They use genetic manipulations in rodent and invertebrate models, behavioral, biochemical, and immunohistochemical approaches, in vivo brain optical and functional imaging including MRI and PET, in vivo brain blood flow measures, and cellular and molecular biology tools to understand the initiating molecular events in dementias and determine the effects of potential drug candidate molecules.

Neuropharmacology

Diseases/disorders of the central nervous system (e.g., depression, anxiety, schizophrenia, addiction, Parkinson’s Disease, Alzheimer’s Disease, migraine, epilepsy, etc.) are prevalent. While all of these are treated with drugs, there are serious drawbacks to current pharmacotherapy, including lack of efficacy and high incidence of adverse effects. Students perform research to understand mechanisms that underlie current drug action and to develop improved medications to treat these devastating diseases.

Neurophysiology

Our students investigate mechanisms of mood disorders (e.g., depression, anxiety, PTSD), social interaction (e.g., autism, fragile X syndrome), neurodegenerative diseases (e.g., Parkinson’s, ALS, MS), dementia (e.g., Alzheimer’s), drug addiction (e.g., opioids, amphetamine, cocaine) as well as regulation of food intake and energy expenditure (e.g., obesity, exercise). Emphasis is placed on genetic mechanisms, neural-glial interactions as well as synaptic and ion channel plasticity. Laboratories emphasize therapeutic targeting of pathogenic mechanisms.

Metabolism and regulation of energy homeostasis

Our students use cell culture and tissue-specific transgenic and knockout animal models to understand the molecular mechanisms leading to various metabolic diseases such as obesity, insulin resistance, and type 2 diabetes. They also identify and characterize novel secretory molecules from human and mouse sera with the hope to develop effective therapeutic treatments to improve energy homeostasis.

Pain Physiology and Pharmacology

Our students conduct research on pain mechanisms, including nociceptor transduction, sensitization, and activation. This includes studies developing novel, non-opioid, non-addictive analgesic drugs using high throughput screening methods. Parallel clinical trials allows our students to learn translational research. A weekly pain journal club and a team science environment fosters these outstanding training opportunities.

Pharmacology of Anticancer Drugs

Our students conduct modern drug discovery from diverse sources to identify the next generation of anticancer drugs. They identify the molecular mechanisms of action of new and current drugs to facilitate the optimal use of these drugs clinically.

Integrated Biomedical Sciences

  • Admissions
  • Characteristics
  • Biology of Aging
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities
  • Cancer Biology
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities
  • Cell Biology, Genetics, and Molecular Medicine
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities
  • Biochemical Mechanisms of Medicine
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities
  • Molecular Immunology and Microbiology
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities
  • Neuroscience
    • Overview
    • Academics
    • Courses
    • Research
    • Career Opportunities
    • Faculty
  • Physiology and Pharmacology
    • Overview
    • Academics
    • Faculty
    • Research
    • Career Opportunities

UT Health San Antonio Institutes and Centers

gree

UT Health San Antonio operates centers and institutes within nine organized research units, as well as institutes and centers such as our Greehey Children's Cancer Institute and NCI-designated Mays Cancer Center. Learn more about our institutes and centers

Greehey Academic & Research Campus 

The Greehey campus is located at the north side of UT Health San Antonio campus at 8403 Floyd Curl Dr San Antonio, TX 78229. Learn about the Greehey facilities 

strf

Core Facilites 

research

The core facilities provide researchers with access to state-of-the-art instrumentation and consultation, including access to advanced research technologies. Learn about the core facilities >>

Map image of UT Health San Antonio location
UT Health San Antonio
Graduate School of Biomedical Sciences

7703 Floyd Curl Drive

San Antonio, TX 78229

210-567-3709

gsbs@uthscsa.edu

  • About us
  • Contact us
  • Maps & directions

We make lives better ®

The University of Texas Health Science Center at San Antonio, also called UT Health San Antonio, is a leading academic health center with a mission to make lives better through excellence in advanced academics, life-saving research and comprehensive clinical care including health, dental and cancer services.

Web Privacy | Links from websites affiliated with UT Health's website (uthscsa.edu) to other websites do not constitute or imply university endorsement of those sites, their content, or products and services associated with those sites. The content on this website is intended to be used for informational purposes only. Health information on this site is not meant to be used to diagnose or treat conditions. Consult a health care provider if you are in need of treatment.