

Clinical Safety & Effectiveness Cohort # 9

Appropriate utilization of procalcitonin for infections in hospitalized patients

SAN ANTONIO

Educating for Quality Improvement & Patient Safety

Financial Disclosure

Marcos Restrepo, MD, has no relevant financial relationships with commercial interests to disclose.

What We Are Trying to Accomplish?

- ✓ To increase the knowledge of the appropriate use of procalcitonin from 50% to 75% in health care providers* ordering procalcitonin at the STVHCS by January 10, 2012
- ✓ To increase the appropriate use of procalcitonin from 41% to 62% (by 50%) in hospitalized patients with presumed infections at the STVHCS by February 16, 2012

^{*} Health care providers = Faculty, fellows, residents and medical students

The Team

Division

- CS&E Participant: Marcos I. Restrepo, MD, MSc
- Team Member: Kelly Echevarria, PharmD
- Team Member: Jose Cadena, MD
- Team Member: Gregory Smith, DDS
- Team Member: Elena Laserna, MD, PhD
- Team Member: Anisha Arora, MD
- Team Member: Elizabeth A. Bowhay, MD
- Facilitator: Amruta D. Parekh, MD, MPH

Sponsor Department & Mentors

- Antonio Anzueto, MD Division Chief (P/CCM) VA
- Jay Peters, MD Division Chief UTHSCSA

Project Milestones

 Team Created 	Sep - 2011
----------------------------------	------------

- AIM statement created
 Sep 2011
- Weekly Team Meetings
 Oct-Dec 2011
- Background Data, Brainstorm Sessions, Oct-Nov 2011
 - Workflow and Fishbone Analyses
- Intervention Design
 Oct-Dec 2011
- Intervention #1 Implemented
 Jan 10, 2012
- Data collection
 Jan 11 Feb 20, 2012
- Data Analysis
 Feb 21, 2012
- CS&E Presentation
 Feb, 24 -2012

Background

What is procalcitonin (PCT)?¹

 A precursor to calcitonin, a polypeptide hormone that regulates calcium in the blood, vitamin D, and bone metabolism

Produced by the C-cells of the thyroid gland²

- The production of PCT is regulated by the CALC-1 gene
- In healthy individuals, PCT is not released into the bloodstream
 - Expression of the CALC-1 gene is restricted to selective expression in the C-cells of the thyroid
 - ➤ Normal level is < 0.1 ng/mL
 - Abnormal levels associated with infection and inflammation

eFigure 1. PCT Algorithm for Antibiotic Stewardship

Abbreviations: PCT procalcitonin, CAP community-acquired pneumonia, PSI pneumonia severity index, COPD chronic obstructive pulmonary disease, GOLD global initiative for obstructive lung disease,

Procalcitonin to assist Antibiotic therapy

RCT – PCT vs. Control for the management of respiratory infections on 1359 subjects

N=925

Outcomes	PCT n=460 - %		Control n=465- %
Abx exposure, mean days	7.2	*	10.7
Abx prescription	91%	*	99%
Adverse events from Abx	23%	*	33%
LOS, mean days	10		9.5

^{*} p<0.05

Figure 2. Antibiotic Exposure in Patients Receiving Antibiotic Therapy

Meta-analysis of PCT-guided algorithms vs. routine practice

N=7 RCT Studies - (n=1131 ICU patients)

Table 5. Meta-analysis of aggregate data^a: Procalcitonin-guided algorithms versus routine practice

Outcomes	Studies	Participants	Statistical Method	Effect Size
Duration of antibiotic treatment for the first episode of infection	5	938	WMD (FEM), 95% CI	-2.14 (-2.48 to -1.80)
Total duration of antibiotic treatment	3	801	WMD (FEM), 95% CI	-4.19 (-4.98 to -3.39)
Antibiotic-free days	3	801	WMD (FEM), 95% CI	2.94 (1.92 to 3.96)
28-day mortality	6	1,010	OR (FEM), 95% CI	0.93 (0.69 to 1.26)
Hospital mortality	4	317	OR (FEM), 95% CI	0.86 (0.52 to 1.44)
ICU length of stay	6	1,010	WMD (FEM), 95% CI	-0.49 (-1.55 to 0.57)
Hospital length of stay	3	801	WMD (FEM), 95% CI	-0.13 (-1.10 to 0.84)
Days free from mechanical ventilation	2	722	WMD (FEM), 95% CI	0.60 (-0.64 to 1.85)
Superinfection rate	3	790	OR (FEM), 95% CI	1.13 (0.83 to 1.54)
Persistent/relapsed infection rate	3	801	OR (FEM), 95% CI	0.97 (0.56 to 1.69)

Reduction of Antibiotic Prescription and/or duration of Abx

Kopterides P, et al.Crit Care Med 2010;38:2229

Procalcitonin Appropriate Indications

Pneumonia

- CAP
- HCAP
- HAP
- VAP
- Aspiration

Sepsis

- SIRS
- Sepsis (SIRS plus documented or suspected infection)
- Severe sepsis (one organ failure)
- Septic shock (on vasopressors)

AECOPD

Procalcitonin Inappropriate Indications

Localized infection

- Skin and soft tissue (abscess, cellulitis)
- Empyema
- Osteomyelitis
- Meningitis
- Endocarditis
- Pancreatitis

Immunosuppression disease or therapies

- Post-transplantation (bone marrow, solid organ)
- s/p chemo

Other

- Trauma/post surgery
- Invasive fungal infection

Diagnosis

- No infection
- Unknown diagnosis

Time of testing

 1st PCT test value in the middle of an Abx course (no baseline)

PCT use at the VA

- Introduced as a laboratory test
 - January 2011
 - No restrictions
 - No guidelines
- **Pre-test evaluation** (April 1, 2011 June 30, 2011)
 - PCT tests n=477
 - 42% Appropriate use
 - 58% Inappropriate use
 - > 96% from two services
 - » ICU /Intermediate care (62%) or Ward service (34%)

Inappropriate Procalcitonin Order

Appropriate Procalcitonin Order

Cause and Effect Diagram

Cause and effect diagram for Inappropriate use of Procalcitonin

PCT Use Flowchart

How Will We Know That a Change is an Improvement?

Measure of Success

- Knowledge regarding PCT use
- Appropriate order of PCT

Method of measurement

- Pre- and post-test evaluation
- Retrospective chart review of documented appropriateness of the PCT order

Specific targets for change

- Increase knowledge of appropriate use of PCT usage
- Increase effectiveness of appropriate PCT order

Components of the Knowledge Evaluation

Numerator

 Number of correct answers by health care providers related to the appropriate usage of PCT

Denominator

 Total number health care providers taking the test regarding the appropriate use of PCT

Testing topic

4 areas of opportunities to appropriate use and order
 PCT

Components of the PCT Algorithm Evaluation

Numerator

Number of appropriate use of PCT orders according to the indications

Denominator

Total number PCT tests performed during the study period

Algorithm characteristics for appropriate use

- Initial testing
- Follow-up testing

Knowledge Evaluation Sample Characteristics

Knowledge evaluation

- Sample population (n=49)
 - Pulmonary and Critical Care fellows (n=12)
 - Medical students (MS 3-4) and internal medicine residents (PGY 1-3) rotating in internal medicine (n=37)

Evaluation date

• January 10, 2012 & December 9, 2011 (for PCCM division)

Evaluation characteristics

- Pre-test
- Educational program
- Post test

Clinical Evaluation Sample Characteristics

Clinical Cohort

- Sample population
 - Procalcitonin test performed to hospitalized patients at the STVHCS
- Evaluation period
 - Pre-intervention period
 - April 1, 2011 to June 30, 2011 (14 weeks)
 - Intervention
 - Education program January 10, 2012
 - Post-intervention period
 - January 11, 2012 to February 16, 2012 (6 weeks)

QI PCT Intervention Implementation

Phase I

- Team literature review
- Developed appropriate usage characteristics
- Developed algorithm for PCT use
 - Appropriate approvals
 - Dissemination protocols
- Educational program
 - Baseline knowledge evaluation (students, residents, fellows, faculty)
 - Pre-test assessment prior to an educational program
 - Post-test assessment after the education program

- Clinical data

- Pre-clinical data collection and analysis
- Post-intervention Phase I: Educational program
- Post-intervention clinical data collection and analysis

Knowledge Based Evaluation Results

QI PCT Appropriate use

Pre and Post-Tests Answers Appropriate PCT utilization

Overall Pre and Post PCT Assessment

Clinical Data Evaluation Results

QI PCT Appropriate use

% Appropriate PCT

